Article 10115

Title of the article

MATHEMATICAL MODELING OF THE COILED SUPRACRYSTALLINE NANOTUBES 

Authors

Brazhe Rudol'f Aleksandrovich, Doctor of physical and mathematical sciences, professor, head of sub-department of physics, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), brazhe@ulstu.ru
Savin Andrey Fedorovich, Postgraduate student, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), a_f_savin@ mail.ru

Index UDK

621.38−022.533

Abstract

Background. Coiled supracrystalline nanotubes are considered as promising nanomaterials for nanosprings in mechanical nanodevices and nanosolenoids in nanoelectronics. The purpose of the paper is their mathematical modeling and demonstration of wide variability of their geometrical and physical properties.
Materials and methods. As the research objects the authors took supracrystalline nanotubes of any chemical composition with sp2- and sp3-hibrydisation of atomic orbitals. Mathematical modeling of their spiralization was carried out in the Accelrys Materials Studio program package. For fast optimization of geometrical parameters of coiled supracrystalline nanotubes the Forcite method of molecular dynamics was used. Further optimization was carried out on the basis of the DFT-method.
Results. The mathematical models for five types of coiled supracrystalline nanotubes were constructed. There are both conductive and dielectric nanocoils among them.
Conclusions. The coiled supracrystalline nanotubes can be used as nanosprings and nanosolenoids.

Key words

carbon nanotubes, supracrystalline nanotubes, coiled nanotubes, nanosprings, nanosolenoids, mathematical modeling.

Download PDF
References

1. Iijima S. Nature. 1991, vol. 354, pp. 56−58.
2. Itoh S., Ihara S., Kitakami J. Phys. Rev. B. 1993, vol. 47, pp. 1703−1704.
3. Itoh S., Ihara S., Kitakami J. Phys. Rev. B. 1993, vol. 48, pp. 5643−5647.
4. Itoh S., Ihara S. Phys. Rev. B. 1993, vol. 48, pp. 8323−8328.
5. Dunlap B. I. Phys. Rev. B. 1992, vol. 46, pp. 1933−1936.
6. Zhang X. B., Zhang X. F., Bernaerts D., Tendeloo G. Van, Amelinckx S., Landyut J. Van, Ivanov V., Nady J. B., Lambin P., Lucas A. A. Europhys. Lett. 1994, vol. 27, pp. 141−146.
7. Amelinckx S., Zhang X. B., Bernaerts D., Zhang X. F., Ivanov V., Nady J. B. Science. 1994, vol.265,pp.635−639.
8. Iijima S., Ajayan P. M., Ichihashi T. Phys. Rev. Let. 1992, vol. 69, pp. 3100−3103.
9. Iijima S., Ichihashi T., Ando Y. Nature. 1992, vol. 356, pp. 776−778.
10. Akagi K., Tamura R., Tsukada M., Itoh S., Ihara S. Phys. Rev. Lett. 1995, vol. 74, pp. 2307−2310.
11. Ihara S., Itoh S. Carbon. 1995, vol. 33, pp. 931−939.
12. Zhong-can O. Y., Su Z. B., Wang C. L. Phys. Rev. Let. 1997, vol. 78, pp. 4055−4058.
13. Fejes D., Hernadi K. Materials. 2010, no. 3, pp. 2618−2642.
14. Popovič Z. P., Damnjanovič M., Miloševič I. Contemporary materials. 2012, vol. III, no. 1, pp. 51−54.
15. Chen X. Q., Zhang S. L., Dikin D. A., Ding W. Q., Ruoff R. S., Pan L. J., Nakayama Y. Nano Lett. 2003, vol. 3, no. 9, pp. 1299−1304.
16. da Fonseca A. F., Malta C. P., Galvão D. S. Nanotechnology. 2005, vol. 17, pp. 5620−5626.
17. Sanada K., Takada Y., Yamamoto S., Shindo Y. J. Solid Mech. Mater. Eng. 2008, vol.2,no.12,pp.1517−1527.
18. Hayashida T., Pan L., Nakayama Y. Physica B: Cond. Mat. 2002, vol. 323, pp. 352−353.
19. Liu L. Zh., Gao H. L., Zhao J. J., Lu J. P. Nanoscale Research Lett. 2010, no. 5, pp. 748−783.
20. Brazhe R. A., Savin A. F. Radioelektronnaya tekhnika: mezhvuz. sb. nauch. tr. [Radio electronic engineering: interuniversity collected papers]. Ulyanovsk: UlGTU, 2012, pp. 169−172.
21. Savin A. F. Svidetel'stvo o gosudarstvennoy registratsii programmy dlya EVM № 2014661182 ot 24.10.2014 [Certificate of State registration of software № 2014661182 from 24.10.2014].
22. Brazhe R. A., Savin A. F. Fizika volnovykh protsessov i radiotekhnicheskie sistemy [Physics of wave processes and radio engineering systems]. 2013, vol. 16, no. 4, pp. 58−62.
23. Savin A. F. Aktual'nye problemy fizicheskoy i funktsional'noy elektroniki: materialy 17-y Vseros. molodezhnoy nauch. shkoly-seminara [Topical problems of physical and functional electronics: proceedings of 17th All-Russian youth scientific school-seminar]. Ulyanovsk: UlGTU, 2014, pp. 125−126.
24. Zhang Z.-Y., Miao C., Guo W. Nanoscale. 2013, vol. 5, pp. 1192−11909.
25. Brazhe R. A., Karenin A. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2011,no.3(19), pp. 131−139.
26. Brazhe R. A. Fizika suprakristallov [Physics of supracrystalls]. Ulyanovsk: UlGTU, 2012, 162 p.
27. Liu L., Liu F., Zhao J. Nano Research. 2014, vol. 7, no. 5, pp. 626–657.
28. Brazhe R. A., Karenin A. A., Kochaev A. I., Meftakhutdinov R. M. Fizika tverdogo tela [Solid state physics]. 2011, vol. 53, no. 7, pp. 1406−1408.

 

Дата создания: 07.07.2015 10:25
Дата обновления: 10.07.2015 08:27